An adaptive PID neural network for complex nonlinear system control
نویسندگان
چکیده
Usually it is difficult to solve the control problem of a complex nonlinear system. In this paper, we present an effective control method based on adaptive PID neural network and particle swarm optimization (PSO) algorithm. PSO algorithm is introduced to initialize the neural network for improving the convergent speed and avoiding weights getting trapped into local optima. To adapt the initially uncertain and varying parameters in the control system, we introduce an improved gradient descent method to adjust the network parameters. The stability of our controller is analyzed according to the Lyapunov method. The simulation of complex nonlinear multiple-input and multiple-output (MIMO) system is presented with strong coupling. Empirical results illustrate that the proposed controller can obtain good precision with shorter time compared with the other considered methods. It provides a novel control approach for complex nonlinear systems.
منابع مشابه
Adaptive PID Control of a Nonlinear Servomechanism Using Recurrent Neural Networks
Recent progress in the theory of neural networks played a major role in the development of new tools and techniques for modelling, identification and control of complex nonlinear dynamic systems. Intelligent control, with a special focus on neuro-control has been used successfully to solve difficult real control problems which are nonlinear, noisy and relatively complex. This is due to the fact...
متن کاملTurbo Expander System Behavior Improvement Using an Adaptive Fuzzy PID Controller
Turbo-expanders are used in industries for cooling, liquefaction and also power generation. An important part of these turbines is the variable angle nozzle causing a nonlinear behavior that is not well recognized among the prime movers of the dispersed generators. In this paper, at first, the turbo expander system is evaluated in details and its nonlinear behavior is investigated. Then, the sy...
متن کاملAdaptive Non Linear PID Controller for Green House Climate Control
This paper presents the novel control strategy, for green house climate control. Till now, there are many control strategy that is work in India, to control green house environment but they are not adequate for good control performance. The controller used in the present work is conventional proportional, integral and derivative (PID) controllers with adaptive neural network. It provides good a...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 135 شماره
صفحات -
تاریخ انتشار 2014